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Unmanned aerial vehicle (UAV) technical 
applications, standard workflow, and future 
developments in maize production – water 
stress detection, weed mapping, nutritional 
status monitoring and yield prediction
Xiuhao Quan, Reiner Doluschitz

As a consequence of rapid ongoing technological developments and increasing integration 
into agricultural mechanization and agricultural intelligence, UAVs are gradually starting to 
play an increasingly important role in field crop management and monitoring. This review 
introduces and covers the development in four major applications of UAVs in maize produc-
tion: (i) water stress detection, (ii) weed mapping, (iii) nutrient status monitoring and (iv) yield 
prediction. In addition, this review summarizes UAV data management methods, explains how 
expert systems work in UAV systems, and provides standardized workflow data for farmers in 
maize production. In addition, the strengths, weaknesses, opportunities, and threats of UAV 
use in maize production are analyzed. Based on more than eighty publications and our own 
research, the discussion and conclusions point out key issues in UAV usage in maize cropping 
and research gaps that need to be filled, along with a number of recommendations for the 
development of UAVs in maize production in the future. 
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Unmanned aerial vehicles (UAVs) can be fitted with specific functional sensors (multispectral, hyper-
spectral, and thermal, etc.) suitable for agricultural purposes to enable image acquisition and data 
collection while flying across crop fields at a low altitude. In addition to remote sensing, UAVs can 
also be used for other agricultural activities such as field surveillance, plant counting, weed mapping, 
yield prediction, irrigation management, plant disease detection, plant health monitoring, and crop 
spraying (Tsouros et al. 2019a). Crop spraying is an important application of UAVs. UAVs equipped 
with tanks fly to the sites where weeds grow, and spray variable rates of herbicides based on weed 
maps instead of uniform blanket application (Castaldi et al. 2017, Yang et al. 2018). However, due to 
the potential environmental hazards of pesticide drift, aerial spraying is forbidden in European coun-
tries (Directive 2009/128/EC). It is only allowed if there are no viable alternatives but reduced im-
pacts on human and the environment as compared with ground-based pesticide application should be 
proved (Reger et al. 2018). Nevertheless, as the progress of technology (e.g. smart drones, high-per-
formance UAVs, and longer flight durations, etc.) and changes of legal boundaries, UAV-based crop 
spraying applications will be an important aspect in the future. 
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Most studies have shown that low agricultural water use efficiency (Fang et al. 2010), exces-
sive nitrogen application (Cui et al. 2008), and pesticide overuse (Brauns et al., 2018) are the main 
problems of maize production all over the world. Given the constraints imposed by these problems, 
more sustainable maize production needs to find innovative ways of solving them. Since UAVs have 
so many benefits in agricultural production, it is natural to use them in maize cropping. Moreover, 
maize has significant size and leaf area make it the most promising crop to work with UAV technolo-
gies because large size and leaf area are easy for UAVs to execute remote sensing and spraying. Some 
new applications of this system have been used in maize cropping, for example, water stress detec-
tion (Shi et al. 2019), yield prediction (Maresma et al. 2016), weed mapping (Castaldi et al. 2017), 
and height estimation (Wang et al. 2019). Table 1 shows the differences between traditional ground 
level precision maize production and UAV-based maize production in field management. Traditional 
ground level precision maize production relies on tractor-mounted sensors, field deployed sensors, 
or portable test devices for field monitoring. However, the movement of tractors on the field could 
cause soil compaction and crop damage. On the contrary, UAV-based maize production uses UAVs 
fitted with sensors to fly across crop fields at a low altitude and this avoids the problems in ground 
level precision maize production. UAVs can cover more areas in a short time and can provide more 
comprehensive field information than ground level precision technologies. Furthermore, UAV-based 
site-specific aerial spraying is more flexible and more faster than tractor-based variable-rate spraying.

Table 1: Differences between traditional ground level precision maize production and UAV-based maize production in 
field management

Ground level  
precision maize production

UAV-based maize production References

Water stress  
detection

Tractors, handheld infrared thermo
meter, portable air temperature meter

UAV multispectral sensors Zhang et al. (2019b)

Yield prediction Yield monitors and yield maps UAV multispectral sensors Jeffries et al. (2020), 
VergaraDíaz et al. 
(2016)

Weed mapping Tractors, spectrometers, fluorescence 
sensors

UAV multispectral sensors Castaldi et al. (2017)

Nutrient status 
monitoring

Tractors, handheld chlorophyll leaf 
clip sensors

UAV multispectral and 
hyperspectral sensors

Gabriel et al. (2017)

Crop spraying Tractorbased variablerate spraying UAVbased sitespecific spraying Castaldi et al. (2017)

However, the review of recent UAV technology progress in maize production is very limited. Up to 
now, UAVs do not have a standardized workflow in maize production, and this can cause confusion 
when farmers are trying to use UAV systems because a high level of expertise is needed at different 
field management stages to choose the suitable strategies and to process data (Orakwe and Okoye 
2016, Tsouros et al. 2019b, Zhang and Kovacs 2012). This increases the difficulty of UAV use and re-
duces labor productivity because not all farmers possess this kind of professional knowledge. There-
fore, a well-structured standardized workflow is urgently needed to guide farmers and to improve 
system efficiency in UAV-based maize production.

This review compiles the recent UAV studies in maize production in a systematic approach, sum-
marizes the data acquisition and processing methods, designs a standard workflow for maize produc-
tion, and offers a clear guide for maize producers. The aims of this paper are (i) to review scientific 
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literature about the current use and development of UAV technologies in maize production; (ii) to 
explain how UAV technologies can solve problems in maize production; (iii) to design a standard UAV 
workflow for farmers in maize production; and (iv) to provide estimations for the future development 
of UAVs in maize production.

1. Uses of UAVs in maize production field management
Based on sixty-two studies published over the last 10 years on the use of UAVs in maize production, 
UAV research can be classified as the following types (Figure 1): water stress detection (10%), nutrient 
status monitoring (18%), weed mapping (19%), yield prediction (27%), height estimation (13%), plant 
distance estimation (3%), maize lodging estimation (3%), maize number counting (3%), and others 
(3%). This review focuses solely on the introduction of UAVs in water stress detection, nutrient status 
monitoring, weed mapping, and yield prediction, which are considered to be the dominant factors 
that impact production costs.

1.1 Maize water stress detection
Accurate crop water stress detection is needed in a comprehensive irrigation management to achieve 
maximum water use efficiency and thus reduce costs. In recent years, two methods have been pre-
dominantly applied to detect water stress in plant: on-site measurement of soil water content and 
plant-based physiological indicators measurement (Ihuoma and Madramootoo 2017). However, 
these conventional methods are time-consuming, costly, and failed to depict the crop water status 
of the entire field (Zhang et al. 2019b, 2019a). Due to the benefits of being easy to operate, flexible, 
and non-invasive coupled with high-resolution images, UAVs have been increasingly used as an al-
ternative production practice in crop water stress monitoring (Park et al. 2017, Poblete et al. 2018, 
Zhang et al. 2019b). Under different water availability conditions, crop leaves reflect different light 
spectrums and show different canopy temperatures and UAV sensors are able to differentiate water 
stress plants from water sufficient plants (Sylvester 2018).

The research on UAV-based maize water status monitoring is very limited. Zhang et al. (2019b) 
established crop water stress index regression models to map maize water status at the reproductive 
and maturation stages based on nine vegetation indices (e.g. normalized difference vegetation index, 

Figure 1: Proportions of UAV application types in maize production (Based on 62 studies published over the last 10 
years)
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soil-adjusted vegetation index, etc.) extracted from UAV multispectral images. Comparing the maize 
water stress estimation results derived from regression models with ground-based data, the R2 value 
could reach 0.81. It proves the feasibility of UAV-based maize water status monitoring. However, this 
research does not demonstrate to what extent these maize water stress estimation regression models 
can be used under varying conditions (e.g. other maize cultivars, other locations, etc.). Furthermore, 
most of the UAV-based maize water stress detection studies only concentrate on single critical growth 
stage instead of the whole growth period of maize and the prediction models can only be used under 
certain circumstances.

Based on the literature available so far, a general standardized procedure of UAV-based maize 
water stress detection is summarized as: (i) using UAVs equipped with sensors to collect data from 
maize fields, (ii) measuring field level maize ground-truth data, (iii) modelling and calibrating the 
UAV data with ground level maize truth data, and (iv) generating maize water status maps that in-
dicate the exact amount of water which should be site-specifically irrigated in different plots or even 
spots instead of widely applied. 

1.2 Maize weed mapping
Weeds are estimated to cause approximately 30% to 60% of potential yield losses in maize produc-
tion worldwide (Castaldi et al. 2017, Chikoye et al. 2005, Oerke 2006, Safdar et al. 2015, Usman 
et al. 2001). Some farmers carry out uniform blanket herbicide spraying for weed control instead of 
site-specific spraying and this causes the excessive use of synthetic chemical herbicides on the fields 
(Castaldi et al. 2017, Pelosi et al. 2015). Herbicides have significantly reduced weed infestation in 
fields, but the excessive use of herbicides has led to environmental and ecological problems such as 
groundwater pollution, soil contamination, and biodiversity loss (Castaldi et al. 2017, Pelosi et al. 
2015, Peña et al. 2013). Consequently, site-specific and efficient weed management is a measure of 
major importance when it comes to reducing the frequency and amount of herbicide usage in maize 
production (Burgos-Artizzu et al. 2011).

UAVs equipped with image sensors fly at low altitudes and are capable of distinguishing weed 
patches from crops in a less expensive way (Prince Czarnecki et al. 2017). Next, UAVs equipped 
with tanks filled with liquid herbicide fly to the field to spray precise amounts of herbicide based on 
observed weed site, weed density, and weed spatial distribution (Pelosi et al. 2015, Peña et al., 2013). 
UAV-based weed mapping and spraying help to reduce the amount of herbicides applied to fields and 
reduce environmental pollution (Castaldi et al. 2017, Pelosi et al. 2015).

The accuracy of UAV maize weed mapping ranges from 61% to 98% in seven studies and the 
accuracy is evaluated by comparing the weeds estimated from UAV images with actual on-ground 
weed counting (Table 2). Castaldi et al. (2017) observed herbicide savings of between 14% and 39.2% 
in UAV-based weed map patch spraying (spraying herbicides only on the site where weeds grow) in 
maize fields compared to conventional blanket application (evenly spraying herbicides on the entire 
field). Due to weed heterogeneity within the field, the saved amount of herbicide was different. Com-
pared with uniform blanket application, site-specific patch spraying did not identify any significant 
differences in maize and weed biomass (Castaldi et al. 2017, Pelosi et al. 2015). This means that 
patch spraying does not compromise maize yield and has the same weed control effects as blanket 
application. UAV weed mapping is a possible option to support precision herbicide patch spraying 
in maize fields without any economic yield loss. Mink et al. (2018) found that UAV weed mapping 
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reduced herbicide use by 90% in post-emergence maize weed treatments. They developed a canopy 
height model combined with vegetation indices and crop geographic coordinates in the field to dis-
tinguish weeds from maize by their height at maize three leaf stage. It demonstrated 96% accuracy in 
maize weed mapping (Mink et al. 2018). 

Table 2: UAVs used in maize weed mapping

Sensors Weed mapping methods UAV remote in-
dices

Accuracy References

Visible light (RGB)1), NIR2) Support vector machine  
algorithm (SVM)

NDVI3) 82% Pelosi et al. (2015)

Visible light (RGB), NIR, 
multispectral 

Support vector machine  
algorithm (SVM)

NDVI 61% Castaldi et al. 
(2017)

Multispectral Objectbased image analysis NDVI 95% PeñaBarragán and 
Kelly (2012)

Multispectral Objectbased image analysis NDVI 86% Peña et al. (2013)
Visible light (RGB),  
multispectral 

Objectbased image analysis NDVI, ExG4) 98% Peña et al. (2014)

Visible light (RGB),  
multispectral 

Canopy height model, weed 
height model

NDVI, ExR5), ExG 96% Mink et al. (2018)

Hyperspectral Support vector machine (SVM), 
machine learning (ML)

Cnorm6) and 
GRDB7)

64% Casa et al. (2019)

1) RGB: red, green and blue; 2) NIR: near infrared; 3) NDVI, normalized difference vegetation index; 4) ExG, excess green index; 5) ExR, excess 
red index; 6) Cnorm, (700 – 515) / (700 + 515); 7) GRBD, band depth 540 – 690.

However, the main obstacle to UAV weed mapping is finding effective algorithms to identify pixels 
which depict weeds in the digital images and remove unrelated background (Burgos-Artizzu et al. 
2011). Because some weeds are similar in appearance (e.g. shape, color, etc.) to crops in the early 
stages of development, it is difficult to discriminate weeds from crops (Burgos-Artizzu et al. 2011, 
Peña-Barragán and Kelly 2012). The accuracy of discrimination affects the outcomes of weed map-
ping and site-specific treatment (Hamuda et al. 2016).

1.3 Maize nutritional status monitoring
At different development stages, maize has varying nutrient demands (Rhezali and Lahlali 2017). 
In order to ensure sufficient nutrient supply, it is crucial to monitor the site-specific nutrient needs at 
different critical stages of maize growth. With the assistance of UAVs, maize real-time nutrient status 
in each plot can be detected by sensors. Comprehensive nutritional status monitoring maps extracted 
from UAV images could be valuable tools in variable rates of fertilizer application. 

Most of the UAV nutrient monitoring studies in maize concentrated on maize nitrogen status as-
sessment (Cilia et al. 2014, Corti et al. 2018, Gabriel et al. 2017, Krienke et al. 2017, Quemada et al. 
2014, Rhezali and Lahlali 2017) because nitrogen nutrient indices are the best indicators to assess 
maize nutritional status (Gabriel et al. 2017) (Table 3). Cilia et al. (2014) highlighted the potential of 
using UAVs to obtain maize nitrogen status maps of the entire field, because the estimated nitrogen 
content derived from UAV images showed good correlation with field level maize nitrogen measure-
ments (R2=0.70) (Cilia et al. 2014). Quemada et al. (2014) also confirmed the reliability of UAVs in 
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nitrogen status assessment at maize flowering stage because the UAV image derived index (TCARI/
OSAVI) was negatively correlated with maize nitrogen balance index (R = -0.84).

Although these studies showed the feasibility of UAV-based maize nitrogen status monitoring, the 
prediction accuracy can be affected by canopy structure, pigment concentration, leaf water content, 
and other nutrient deficiencies except nitrogen (Gabriel et al. 2017). To minimize the impact of these 
interfering factors, further research should use more UAV remote indices as independent variables in 
maize nitrogen status estimation models. Using more remote indices to predict maize nitrogen status 
has been proved to be more stable and more reliable than using single one because a single index is 
easily affected by the factors mentioned above (Cilia et al. 2014, Gabriel et al. 2017, Quemada et al. 
2014).

Table 3: UAVs used in maize nitrogen status monitoring

Sensors UAV remote indices Prediction models Phenology
stage of maize

References

Multispectral BNDVI1), GNDVI2), 
GC3)

Linear regression, least 
square regression

V6+V9 Corti et al. (2018)

Hyperspectral MCARI/MTVI24), NNI5) Ordinary least squares 
regression 

Preflowering 
stem elongation

Cilia et al. (2014)

Hyperspectral TCARI6)/OSAVI7) Polynomial regression Flowering Gabriel et al. (2017)
Hyperspectral, thermal TCARI/OSAVI Linear regression Flowering Quemada et al. (2014)

1) BNDVI: Blue Normalized Difference Vegetation Index; 2) GNDVI: Green Normalized Difference Vegetation Index; 3) GC: Ground Cover;  
4) MCARI/MTVI2: Modified Chlorophyll Absorption Ratio Index/Modified Triangular Vegetation Index 2; 5) NNI: nitrogen nutrition index;  
6) TCARI: Transformed Chlorophyll absorption in reflectance index; 7) OSAVI: Optimized soiladjusted vegetation index.

Based on the four references presented in Table 3, the basic workflow of UAVs in maize nitrogen 
monitoring is summarized as (i) UAV sensors capture images above maize fields, then derive vegeta-
tion indices which characterize the nitrogen status of maize; (ii) determine maize nitrogen concen-
tration using ground level destructive measurements in some representative plots; (iii) by means of a 
series of regression analyses, selecting the best index or combined indices to predict maize nitrogen 
status which leads to the results that strongly correlate with ground level maize nitrogen measure-
ments. 

1.4 Maize yield prediction
Maize yield prediction prior to harvest is very important for farmers to enable them to take decisions 
about the input of water, fertilizers, pesticides, labor, transportation, space for storage as well as for 
predicting market constellation and developing optimal economic strategies (Geipel et al. 2014). In 
most cases, some farmers estimate the yield based on their experience, yield maps, or partly field 
sampling (Ping and Dobermann 2005). These methods are over-reliance on experience and the re-
sults cannot convey accurate information about fields and proved to be labor-intensive and time-con-
suming (Li et al. 2016, Wahab et al. 2018). Compared to these methods, the UAV-based system reduc-
es labor and there by improve economic performance (Tsouros et al. 2019a), saves time (Tsouros et 
al. 2019a), and expands the area of field investigation (Barbedo 2019). The yield is inferred through 
its correlation with UAV data in mathematical modeling, then a maize yield prediction model can be 
given to decision makers (Herrmann and Bdolach 2019).
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Vegetation indices (e.g. WDRVI, BNDVI, NDVI, ExG) derived from UAV images are considered to 
be effective variables in different forecast models for yield prediction (Table 4) (Geipel et al. 2014, 
Herrmann and Bdolach 2019, Vergara-Díaz et al. 2016, Wu et al. 2019, Zhang et al. 2020). During 
vegetative growth stages, different prediction models were developed to predict maize yield, such as 
linear regressions (Zhang et al. 2020, Zhu et al. 2019), random forest regressions (Han et al. 2019, Li 
et al. 2016), partial least squares regressions (Herrmann and Bdolach 2019, Wu et al. 2019), etc. The 
R2 ranges from 0.37 to 0.94 because the goodness of fit of the models is affected by many variables 
(e.g. maize growth stages, sensor sensitivity, weather conditions, locations, etc.) (Zhang et al. 2020). 

Table 4: UAVs used in maize yield prediction

Sensors UAV remote indices Image/ data 
processing soft-

ware tools

Prediction 
models

R2 Phenology
stages of 

maize

References

Multispectral Wide dynamic range 
vegetation index 
(WDRVI)

JMP Pro 12  
statistical  
package

Linear and 
quadratic  
regression 

0.92 V12 Maresma  
et al. (2016)

Visible light 
(RGB)1)

Excess green (ExG)  
color feature

Curve Fitting  
Toolbox of Matlab

Linear  
regression

0.37 R2, R3, R6 Zhang et al. 
(2020)

Multispectral,
Hyperspect
ral 

Structure of motion 
(SfM) mean point 
height

Smart3DCapture 
software

Random
forest  
regression  

0.78 R3, R4 Li et al. 
(2016)

Multispectral Normalized difference 
vegetation index (NDVI)

ENVI software Exponential
regression

0.72 R2R3 Vergara 
Díaz et al. 
(2016)

Multispectral LiDAR
point clouds

Python 2.7, and  
R × 64 3.5.3

Linear  
regression

0.85 Jointing period 
of summer 
maize

Zhu et al. 
(2019)

Visible light 
(RGB),  
multispectral, 
hyperspectral 

Vegetation indices (VIs) Matlab 7.6, 
PLStoolbox

Partial
least squares 
regression 

0.73 R2 Herrmann 
and Bdolach 
(2019)

Multispectral Blue and near infrared
wavelength bands 
(BNDVI)

Agisoft  
PhotoScan 
professional  
software

Partial
least squares 
regression 

0.4
0.69

Entire growing 
season

Wu et al. 
(2019)

Multispectral BIOVP:
a volume metric used 
to estimate crop  
biomass within a plot

Pix4D software Random  
forest  
regression  

0.94 V12, VT Han et al. 
(2019)

1) RGB: red, green and blue; R2 is the coefficient of determination of the maize yield prediction model

However, in case of using only UAV derived vegetation indices in maize yield prediction models 
is not sufficient to get convincing results (Geipel et al. 2014). Maize height, canopy cover, and other 
structural information extracted from UAV remote sensing can be considered as independent varia-
bles in yield prediction models simultaneously with UAV derived vegetation indices to improve yield 
prediction accuracy (Geipel et al. 2014, Han et al. 2019, Zhu et al. 2019). Some studies have shown 
the correlation of maize yield with maize height before mid-season stage (Katsvairo et al. 2003, Yin 
et al. 2011a, 2011b).
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2.  Standard workflow of UAVs in maize production
Recently, the most widespread commercial application of UAVs in maize production on the market 
has followed this standard workflow: UAV-based field data collection → Farm Management Informa-
tion Systems → UAV field operation management (DJI 2020, PrecisionHawk 2020, XAG, 2020).

2.1 UAV-based field data collection
UAVs fitted with multispectral sensors fly across the entire field at a low altitude to collect images and 
data from crops. The sensors then transmit the collected information to locally installed software such 
as Agisoft PhotoScan and this a common and valid option for most UAV users (Kaimaris et al. 2017, 
Radoglou-Grammatikis et al. 2020). Apart from processing the data on local personal computers or 
workstations, some UAV companies provide cloud services which can also assist in data processing 
(DJI 2020, PrecisionHawk 2020, XAG, 2020). UAVs could be operated by farmers themselves or farm-
ers could source professional licensed operators nearby from an UAV commercial service platform to 
operate the UAVs for them (Zhang et al. 2020). 

2.2 Farm Management Information Systems (FMIS)
FMIS are databases designed to manage, implement, and record farm operations systematically (Bur-
lacu et al. 2014, Pedersen and Lind 2017, Sørensen et al. 2010, Zhai et al. 2020). In UAV-based maize 
production, FMIS are integrated systems with different functional components to assist farmers in 
real time decision making (DJI 2020, PrecisionHawk 2020, XAG 2020): automated data processing, 
expert systems, user-controlled interfaces, and farm recordkeeping systems, etc. (Sørensen et al. 
2011, 2010). The inputted farm data in FMIS are analyzed automatically by expert systems (Bour-
sianis et al. 2020, Kenneth and Chinecherem 2018). Expert systems are powerful tools based on 
human expert analytical experience, agronomic data from previous years, and computer simulated 
human expert reasoning process, etc. to predict crop nutritional status, generate prescription maps, 
design customized expert reports, and give suggestions on fertilization, irrigation, and plant protec-
tion, etc. (DJI 2020, Prasad and Babu 2006, Rani et al. 2011). Other artificial intelligence methods 
can also involve in UAV data processing, such as artificial neural networks for predicting crop nutri-
tional status (Jha et al. 2019), random forest for modelling maize above-ground biomass (Han et al. 
2019), fuzzy logic for forecasting crop water requirements (Talaviya et al. 2020), etc. User-controlled 
interfaces allow farmers to control and to access processing and analysis functions (Murakami et al. 
2007). All field work executed in a plot is recorded in farm recordkeeping systems (Saiz-Rubio and 
Rovira-Más 2020). The data generated in a current year production cycle in the FMIS are used to 
assess performed field work and will be stored on local personal computers, laptops, or cloud-based 
storage systems as baseline information for next season production (XAG 2020). All storage options 
are valid; farmers can choose appropriate data storage paths depending on their needs (DJI 2020).

2.3 UAV field operation management
Farmers can manage and supervise UAVs in the performance of their field tasks through a smart 
remote controller (PrecisionHawk 2020). Mission planning software designs automated missions for 
UAVs so that they can carry out field tasks automatically without manual operation (Srivastava et 
al. 2020). Farmers send instructions from smart remote controllers to manipulate UAVs to execute the 
requested movements (e.g. take-off, speeding, spraying, and landing, etc.) (DJI 2020). After receiving 
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the radio signals sent from remote controllers, UAVs move automatically along designated routes 
to execute remote sensing or spraying. During the mission, UAVs share the real-time location with 
smart remote controllers (XAG 2020). If the UAVs were out of the designated tracks, farmers can ad-
just the flight paths by sending instructions from smart remote controllers.

3.  Strengths, weaknesses, opportunities, and threats (SWOT) analysis of UAVs 
in maize production

Based on the literature available so far, a SWOT table can be elaborated, depicting the major strengths, 
weaknesses, opportunities, and threats of UAV use in maize production (Table 5).

Table 5: SWOT analysis of UAVs used in maize production

Strengths Weaknesses
Minimize labor input Data processing
Increase productivity Data interpretation
Reduce resource wastage Weather reliant
Accurate realtime field monitoring High investments for smallscale farmers
Fewer working hours Special education and training

Opportunities Threats
Yield prediction UAV crash
Nutrient status monitoring UAV maintenance 
Irrigation management Unstable UAV performance
Identify weeds and diseases Short flight time of each mission
Generate prescription maps Unclear data ownership regulations

The strengths of UAVs in maize production are the reduction of labor input, higher productivity and 
thus higher economic performance, reduced resource wastage, accurate real-time field monitoring, 
and fewer working hours. Complicated data processing and data interpretation are the weaknesses 
that restrict the development of UAVs. A weakness of UAV operation is that it is weather dependent. 
Windy and rainy weather conditions are not ideal for UAVs and flights should be suspended under 
these circumstances (Tsouros et al. 2019a). Depending on platforms and sensors, the price of UAVs 
can be different. In 2018, the average price of a domestic brand crop spraying UAV was $14815 in 
China (Yang et al. 2018). A basic GPS guidance system in precision agriculture costs $800 to $1500 
in the US in 2017 (Andrews 2017). The investments of UAVs are quite high especially for small size 
farmers because their production scale is small and the benefit, they could get from UAV technolo-
gies is limited (Yang et al. 2018). Farmers need special education and training, and this is another 
weakness of UAV adoption in maize production because not all farmers are willing to acquire new 
knowledge (Michels et al. 2019, Tamirat et al. 2018).

The UAV system offers opportunities for maize yield prediction, maize nutrient status monitoring, 
maize irrigation management, identification of maize weeds and diseases, and generation of prescrip-
tion maps. But it also comes with some threats. Farmers need to run the risk of their UAV crashing; 
this happens sometimes (Barbedo 2019). UAV maintenance is an essential expense if an UAV were 
to be out of action. Unstable UAV performance also bothers farmers from time to time. The UAV flight 
time in each mission ranges from 8 to 60 minutes at full load (Candiago et al. 2015, Norasma et al. 
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2019, Tsouros et al. 2019a). Short flight time of each mission is another threat which affects UAV 
application because farmers need to refill application materials or to recharge energy frequently after 
each flight (Yang et al. 2018). This reduces the working efficiency. Longer flight time of each mission 
could be desirable for farmers. Fixed wing UAVs have long flight time, high speeds, high load capacity, 
stable performance and can cover large areas in a single mission, but they need wide space for take-
off and landing (Boon et al. 2017).Comparing with fixed wing UAVs, multi-copter UAVs have slower 
speeds, shorter flight time, less payloads, but they are more flexible and more manoeuvrable because 
they can take off and land off vertically in constrained areas (Tsouros et al. 2019a). Therefore, fixed 
wing UAVs are best for large scale field investigation or spraying; instead multi-copter UAVs are good 
for small areas precise mapping or site-specific spraying. Finally, data ownership regulations have to 
be clarified in standard regulations to avoid conflicts of interest.

4. Discussion
Compared with traditional ground level precision maize production, UAVs offer an innovative way in 
irrigation management, nutrient status monitoring, weed mapping, and yield prediction. With the 
support of UAV precision technologies and FMIS, farmers can improve their work efficiency, reduce 
labor, and lower resource wastage. UAVs provide farmers greater access to real-time information on 
maize fields in a few hours and carry out comprehensive digital field monitoring and intelligent man-
agement. Farmers are released from the burden of complex data processing and intricate agricultural 
task planning, and all the agricultural activities are managed, planned, and recorded by the FMIS. 
This is the most significant merit of UAV-based agricultural production systems. 

However, there are some severe limitations when using UAVs in maize production. UAV data man-
agement and UAV operations are very complicated. Without special training and education, farmers 
will not be able to handle it properly. The high purchase cost restricts UAV development in small 
scale farmers because their production scale is small and the benefit, they could get from UAV tech-
nologies is limited (Yang et al. 2018). Unstable performance bothers farmers from time to time when 
they are using UAVs (Sinha et al. 2016). Furthermore, UAV-based field management is not a general 
practice in maize production currently and it is not clear if they can replace the traditional ground 
level precision agriculture technologies in the future. Unclear data ownership regulations may cause 
conflicts of interest between farmers and data management platforms (Saiz-Rubio and Rovira-Más 
2020, Wiseman et al. 2019). All these factors added together could increase the difficulty of UAV use 
in maize production and reduce work efficiency.

5. Conclusions and recommendations
This article contributes to the use, research, and development of UAVs in maize production, and leads 
to better understanding of the role of UAVs in maize production. The application of UAV technologies 
can solve some, but not all, problems in maize production. The advantages and potential of UAVs 
should not be overestimated. Compared to traditional ground level precision agriculture technologies, 
most of the UAV systems are still in the preliminary development and experimental stages. Moreover, 
the conclusions of UAV-based studies are only drawn from limited researches on specific field and 
maize variety conditions. The applicability of these conclusions in different circumstances needs to 
be verified. The large-scale commercial use of UAVs in maize production still has a long way to go. Up 
to now, most of the studies have focused on the technical level of UAV use, and not on the economic, 
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social, ecological aspects or impact of UAVs in maize production systems. Future research is needed 
in these areas: education and training, impact assessment, technology assessment, economic evalua-
tion, ecological evaluation, sustainable scheme, proper data ownership regulations.

Overall, there are some recommendations regarding UAV use in maize production in the future:
(i)  Development of cost-effective UAVs, to make them more commercially acceptable to small-

scale farmers;
(ii)  Improvement of UAV performance, increases in the working time and load capacity of UAVs 

in a single flight, and reduction of UAV crashes; UAV unsupervised operation also needs to be 
improved because most countries only allow UAVs to be operated under supervision and this 
makes operation costly;

(iii)  Improvement of UAV spraying accuracy and avoid drifting, to promote the adjustment of aerial 
spraying legal regulations;

(iv)  Construction of user-friendly and high efficiency data management platforms to accelerate the 
ability of data transmission, processing, and interpretation;

(v)  Offer of special training and education to farmers who have purchased UAVs, ensuring they 
get sufficient technical guidance and support services;

(vi)  Clearer legal and regulatory frameworks to govern data management, which includes data 
collection, sharing, using, control, and accessibility;

(vii)  Enhancement of network connections between UAV data management platform members and 
promotion of data sharing and benefit sharing among them;

(viii)  Building of UAV system-based field management demonstration sites or farms and provision of 
consultancy and extension services to farmers.
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