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Machine learning for predicting animal wel-
fare risks in pig farming
Tobias Zimpel, Martin Riekert, Achim Klein, Christa Hoffmann

Animal welfare is a quality indicator of modern pig farming and increasingly important to so-
ciety. Animal welfare risks have multiple factors and should be recognized and mitigated early 
on to prevent economic risks. In this work, we use machine learning models to predict animal 
welfare risks. Our dataset comprises data for over 57,000 pigs with indications of 10 animal 
welfare risks and 14 suckling phase features. We contribute a prediction model for suckling 
phase deaths with an accuracy of 80.4% – providing a sizeable improvement over a majority 
vote‘s accuracy of only 53.1%. The proposed model may help pig farmers to prevent deaths in 
the suckling phase of pigs at an early stage by taking countermeasures.
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Animal welfare can be defined using the five freedoms according to the Farm Animal Welfare Council 
(2009): freedom from hunger, thirst, discomfort, pain, fears, suffering, injuries, illnesses, and the 
freedom to develop normal behavior. In practice, animal welfare risks are recognized, for example, 
by observing animal welfare indicators (Zapf et al. 2017). The procedure and information on the col-
lection of animal welfare indicators in practice are included in the guidelines of the Kuratorium für 
Technik und Bauwesen in der Landwirtschaft e.V.

Also, sensors are used in the literature to monitor animal welfare indicators. For example, cameras 
and microphones are applied (Riekert et al. 2020, Matthews et al. 2016). Microphones can be used 
to determine a pig’s stress level. Thereby, the classification error is less than 5% (Manteuffel and 
Schön 2002). Chung et al. (2013) use microphones for diseases detection and report a classification 
error between 6 and 9%. However, sensor-based approaches for monitoring animal welfare risks re-
quire the installation and operation of sensors.

Another approach consists of using data as indicators that are already recorded in the piggery, 
e. g., the weight. Preliminary work on the prediction of animal welfare risks indicates the influence 
of early biological indicators (Díaz et al. 2017). Díaz et al. (2017) studied the relationship between 
biological indicators recorded at an early stage and the mortality and the health of pigs. According to 
Díaz et al. (2017), the probability of death is 28.4 % for pigs with a birth weight of less than 0.95 kg.

On the other hand, pigs with a birth weight greater than 0.95 kg survived with a probability of 
87.1% (Díaz et al. 2017). However, due to the low lower limit, the procedure is very restrictive. Also, 
Díaz et al. determined relationships between early biological indicators and animal welfare risks that 
are related to diseases and inflammation of organs.

In particular, pigs with lower weaning weights have a higher risk of heart disease, pneumonia, and 
pleurisy than pigs with higher weaning weights. The knowledge of the higher risk of heart disease with 
low weaning weight can, at least for high blood pressure as heart disease, be transferred to low birth 
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weight (Poore et al. 2002). Poore et al. (2002) stated that pigs with a birth weight of less than 1.4 kg 
had a higher risk of developing high blood pressure than pigs with a birth weight of more than 1.7 kg.

Against this background, we use machine learning (ML) to predict animal welfare risks with bi-
ological indicators as early as possible. ML algorithms are defined by their ability to improve perfor-
mance with increasing experience concerning a task (Mitchell 1997). In this work, we use the ma-
chine learning algorithms support-vector machine (SVM) (Cortes and Vapnik 1995), random forest 
(RF) (Breiman 2001), gaussian naive bayes (GNB) (John and Langley 1995) and logistic regression 
(Logit) (Lin et al. 2008). Hyperparameters have an important influence on these algorithms. A suita-
ble choice of the hyperparameters increases the performance of the ML algorithm. Therefore, testing 
different assignments of the hyperparameters is required (Bergstra, Yamins and Cox 2013).

Material and method
Our dataset was recorded at the Boxberg Teaching and Research Centre – Centre for pig rearing and 
pig breeding (LSZ Boxberg) for the analysis, consisting of 57,104 examples including different bio-
logical data of pigs (like weights, environmental forms, diseases). Based on the pigs’ birthdate, the 
biological data were recorded in the period between October 2011 and May 2018. Our approach for 
generating models for predicting animal welfare risks is divided into the model selection, parame-
terization and training of the ML-methods on the training set, and determining the performance on 
an independent test set. Figure 1 shows our research model for ten different animal welfare risks as 
target variables.

These ten animal welfare risks consist of four deaths in different phases, five diseases, and reach-
ing the minimum weaning weight. In this work, the minimum weaning weight is reached if the pig 
has a weight of at least 5 kg on the weaning date. The four forms of death consist of death in the 
suckling phase, death in the rearing phase, death in the fattening phase, and death regardless of the 

** Not for death in the suckling phase and for reaching the minimum weaning weight
* Not for death in the suckling phase

Figure 1: Research model
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Biological indicators(Features)
• Race of the mother (Categorial)
• Race of the father (Categorial)
• Housing environment (Categorial)
• Birth weight of the pig (Continuous)
• Number of pigs born alive (Continuous)
• Number of stillborn pigs (Continuous)
• Total number of pigs born (Continuous)
• Pig weaning weight** (Continuous)
• Pig's weight after 21 days* (Continuous)
• Daily increase in the mammalian phase* (Continuous)
• Percentage increase in the mammalian phase* 

(Continuous)
• Sex of the pig (Continuous)
• Planned weaning age of the pig in days * (Continuous)
• Litter number of the mother (Continuous)

Maschine learning algorithms
• Support vector machine (SVM)
• Random forest (RF)
• Logistic regression (Logit)
• Gaussian naive bayes (GNB)

Model Selection
• Randomized  hyperparameter 

optimization 
• 2‐fold stratified 

cross‐validation

Classification error on the test set for the 
target variables
• Death in the suckling phase (Binomial)
• Death in the rearing phase (Binomial)
• Death in the fattening phase (Binomial)
• Death regardless of the phases(Binomial)
• Pneumonia with more than 30 percent (Binomial)
• Pneumonia with less than 30 percent (Binomial)
• Pleurisy with more than 30 percent(Binomial)
• Pleurisy with less than 30 percent (Binomial)
• Pericarditis (Binomial)
• Reaching the minimum weaning weight (Binomial)
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phase. The five diseases are: pneumonia with a disease degree of less than 30% of the lungs, pneu-
monia with a disease degree of more than 30% of the lungs, pericarditis, pleurisy affecting than 30% 
of the tissue layer, and pleurisy affecting more than 30% of the tissue layer. These ten animal welfare 
risks were chosen due to their influence on the development of pigs (Botreau et al. 2007). Each ani-
mal welfare risk is binary coded with the value 1 for “occurs” and 0 for “does not occur”. Diseases are 
stored in the data when they occur. Hence, we assume that no record of the disease implies that the 
disease has not occurred. Deaths are categorized according to whether there is a death or a regular 
slaughter in the records.

We selected 14 biological indicators that are available during the suckling phase and are directly 
related to pigs (Figure 1):

1. Pigs’ housing environment during the suckling, rearing, and fattening phase with the forms 
“alternative” and “conventional” housing

2. Eight races of the mother
3. Seven races of the father
4. The birth weight
5. The control weight on the 21st day after birth
6. The weaning weight
7. Gender with the form’s male, female, and hermaphrodite
8. The percentage increase between weaning weight and birth weight
9. The planned weaning age in days.
10. The daily increase during the suckling phase
11. The mother’s litter number (number of litters)
12. The number of pigs born alive in the same litter
13. The number of stillborn pigs in the same litter
14. The total number of pigs born in the same litter

The pig’s housing environment describes either conventional housing on a slatted floor or alternative 
housing, which differs in terms of floor design and stable area for each animal (Federal Ministry of 
Food and Agriculture Germany 2018, Mauer 2014). The eight races of the mother (mainly a cross 
between Large White and the German Landrace as well as a cross between Large White, Leicoma, and 
Deutsche Landrace) and the seven races of the father (mainly German Piétrain pig) in the dataset 
correspond to the breed coding of the Bundesverband Rind und Schwein e.V.

For data cleansing, the steps outlier detection, typo correction for text fields, and data type inspec-
tion were carried out. However, outlier detection was only performed for continuous features, i. e., 
biological indicators with a value from the real numbers (e. g., birth weight). Features are the input 
data into the ML algorithms. A feature value was marked as an outlier if the value is greater than the 
upper limit of 1.5 times the interquartile range plus 5% of the interquartile range to the third quartile 
(Q3) or smaller than the lower limit of 1.5 times the interquartile range minus 5% of the interquartile 
range to the first quartile (Q1). Then, we removed these from the dataset. Furthermore, we removed 
examples from the dataset if the actual data type of the feature did not match the target data type. 
Also, we deleted examples that did not have a valid filled death or slaughter feature. The minimum 
weaning weight was calculated and achieved if the weaning weight was greater than or equal to 5 kg.

We created a separate dataset for each animal welfare risk. Also, e. g., if pigs died in the suckling 
phase, these cannot appear in the dataset for death in the fattening phase. In sum, ten datasets with 
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a size of up to 11,000 examples were created. Thereby, we chose the most recent examples according 
to the birthdate. Each of the datasets was divided into a training and test set before one-hot encoding. 
Here, we used the most recent 10,000 examples for the training set and the remaining examples as a 
test set. One-hot encoding describes the process of replacing a categorical feature by inserting a new 
column for each possible value of this categorical feature. Here, categorical features describe biolog-
ical indicators for which the values are nominally scaled (e. g., gender). After the split into training 
and test set, examples were removed from the test set in which expressions of categorical features 
(e. g., housing “alternative”) appear in the test set, but not in the training set. If a value of a categorical 
feature is not included in the training set is used in the test set, the meaning of the columns and the 
number of columns may change after one-hot encoding. Table 1 shows the number of examples in the 
training and testing set.

Table 1: Number of examples in the training and test set

Animal welfare 
risk D. SP D. RP D. FP D. P PL1 PL2 PN1 PN2 MWW

Examples  
in the training set 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Examples  
in the test set 652 264 999 428 1,000 1,000 1,000 1,000 652 71

D: Death regardless of the phase, D. RP: Death in the rearing phase, D. FP: Death in the fattening phase, D. SP: Death in the suckling phase, 
MWW: Reaching the minimum weaning weight, P: Pericarditis, PL1: Pleurisy < 30 %, PL2: Pleurisy > 30 %, PN1: Pneumonia < 30 %, PN2: 
Pneumonia > 30 %

In this work, we used the algorithms (Scikit-learn Version 0.19.2) SVM (support vector machine), 
RF (random forest), GNB (gaussian naive bayes), and Logit (logistic regression). Because no method 
has a higher performance a priori, a comparison of the procedures is necessary (Wolpert 1996). For 
replication, we published our code at https://wi2.uni-hohenheim.de/analytics (Pineau et al. 2020).

Before the randomized hyperparameter optimization, the training data were normalized to the 
interval [0.1] and transformed into vectors for categorical features using the one-hot encoding method 
for each animal welfare risk (Bergstra and Bengio 2012). This normalization allows for a faster com-
putation time by holding null values in comparison to non-null values for categorical features. The 
corresponding test set was also normalized using the same normalization setting from the underlying 
training set.

Subsequently, the model selection is carried out using randomized hyperparameter optimization. 
Different configurations of hyperparameters (Table 2) are tested on the training set to determine the 
parameters achieving the highest performance of the method (Bergstra and Bengio 2012).
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Table 2: Values for randomized hyperparameter optimization

ML Hyperparameter Range

RF

Number of features for the split
Lower limit based on examples of a splitt
Bootstrap
Split criterion
Number of estimators

Random integer between one and the number of features
Random integer between two and eleven 
True, False
Gini-Index, Entropy
10,100, 200

SVM
Kernel
C 

linear, poly, rbf, sigmoid 
0.001, 0.01, 0.1, 1, 10, 50, 75, 100, 125, 150, 1,000, 
1,500, 2,000, 3,000, 5,.000

Logit C 0.001, 0.01, 0.1, 1, 10, 50, 75, 100, 125, 150, 1,000, 
1,500, 2,000, 3,000, 5,000

ML: Machine learning method, Logit: Logistic regression, RF: Random forest, SVM: Support vector machine

For ML algorithm RF, we used a random natural number between one and the number of biological 
indicators for the number of features and a random natural number between one and eleven for the 
minimum number of samples. Also, we used the entire dataset for tree generation, Gini index and 
entropy as the split criterion, as well as the numbers 10, 100, and 200 for the number of trees. The 
Gini index uses the relative frequencies of the feature values as the basis for making decisions about 
the split. Entropy describes a measure for the level of information as the basis for decision-making 
during the split.

For ML algorithms SVM and Logit, we used the values 0.0001, 0.01, 0.1, 1, 10, 50, 75, 100, 125, 
150, 1,000, 1,500, 2,000, 3,000 or 5,000 for hyperparameter C. These values are based on Hsu et al. 
(2003). For the hyperparameter “kernel”, the SVM we chose a linear kernel (linear), a polynomial ker-
nel (poly), a kernel with a radial basis function (rbf), and a kernel with a sigmoid function (sigmoid). 
We conducted the randomized hyperparameter optimization with ten runs using random parameters 
of the predefined set of parameters and two-fold stratified cross-validation for each ML algorithm (Ko-
havi 1995). No hyperparameter optimization was conducted for GNB, because no hyperparameters of 
the procedure can be specified without limiting GNB (e. g., costs of the SVM).

For each animal welfare risk, together with the hyperparameter optimization, the performance of 
all possible combinations of biological indicators was compared with one another for each ML-meth-
od. (e. g., birth weight, weaning weight and the combination of birth weight and weaning weight). 
Thus, with 13 biological indicators there exist over 16,000 combinations for the animal welfare risks 
death in the resting phase, death in the fattening phase, and for the diseases. Also, nine biolocial in-
dicators generating over 500 combination for the death in the suckling phase and death regardless of 
the phase. In contrast, over 4,000 combinations with 10 features were compared for the risk reaching 
the minimum weaning weight.

Accuracy describes the percentage of a classifier to correctly assign objects to a class (Witten 
et al. 2011, Nguyen and Armitage 2008). The classification of the ML is divided into the following 
categories:

 � True positive (tp): The class was recognized, and the class is present. 
 � False positive (fp): The class was recognized, but this class is not present. 
 � False negative (fn): The class was not recognized, but the class is present.
 � True negative (tn): The class was not recognized and does not present.
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The following metrics were calculated using the confusion matrix terminology (Manning and Schütze 
1999):

The majority vote describes a decision rule in which the most common class is selected as the true 
class. The majority vote is calculated as follows (Tian and Zhu 2015):

Thereby, 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖 =  argmax
𝑑𝑑𝑑𝑑∈[𝐷𝐷𝐷𝐷]

�𝕝𝕝𝕝𝕝�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑�,∀𝑖𝑖𝑖𝑖 ∈ [𝑀𝑀𝑀𝑀]
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

 1 

 2 

 is the selected class for an example i of a dataset with M examples, [D] the set of occur-
ring classes (here: [D] = {0, 1}), j a method of the N methods (here: |N|= 1) for proposals of the class, 
and xij represents the proposed class of j for  (∙) is an indicator function that takes the value 1 if the 
proposed class corresponds to the actual class and takes the value 0 otherwise (Tian and Zhu 2015).

Accuracy is used to compare the combinations of biological indicators during the parameterization 
and training of the methods for each animal welfare risks. Then, we calculated the metrics recall, 
precision, and accuracy on the independent test using the trained ML model of the combinations of 
biological indicators with the highest accuracy on the validation amount for each animal welfare risk.

Results 
Table 3 shows the accuracy of the animal welfare risks after hyperparameter optimization in the mod-
el selection using two-fold stratified cross-validation. On the training set for the death regardless of 
the phases we achieve an accuracy of 0.736 and an accuracy of 0.837 for death in the suckling phase. 
However, no precision and no recall were calculated on the validation set. No improvement of the 
accuracy concerning the majority vote in the model selection that is greater than 0.02 is achieved for 
the animal welfare risks pneumonia, pericarditis, pleurisy, reaching the minimum weaning weight, 
death in the rearing phase, and death in the fattening phase. For the remaining configurations the 
model configurations are not reported, because no improvement in accuracy is achieved in the model 
selection or on the test set.
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Table 3: Accuracy in the model selection

D D. SP MWW D. RP D. FP P PL1 PL2 PN1 PN2

Majority Vote 0.502 0.717 0.980 0.951 0.984 0.980 0.983 0.998 0.929 0.993

SVM 0.736 0.836 0.996 0.951 0.984 0.980 0.983 0.998 0.929 0.993

RF 0.696 0.830 0.993 0.951 0.984 0.981 0.983 0.999 0.929 0.993

Logit 0.729 0.837 0.994 0.951 0.984 0.980 0.983 0.998 0.929 0.993

GNB 0.733 0.663 0.966 0.934 0.984 0.980 0.983 0.998 0.925 0.993

D: Death regardless of the phases, D. RP: Death in the rearing phase, D. FP: Death in the fattening phase, D. SP: Death in the suckling phase, 
GNB: Gaussian naive bayes, Logit: Logistic regression, MWW: Reaching the minimum weaning weight, P: Pericarditis, PL1: Pleurisy < 30 %, 
PL2: Pleurisy > 30 %, PN1: Pneumonia < 30 %, PN2: Pneumonia > 30 %, RF: Random forest, SVM: Support vector machine

Subsequently, for each animal welfare risk the ML model that achieved the highest accuracy was 
selected. Then, we tested these models on the test set. For example, we selected the SVM as an ML 
model for death regardless of the phases and Logit as an ML model for death in the suckling phase. 
The corresponding accuracy, precision, and recall using these ML models on the test set are shown 
in Table 4.

Table 4: Metrics of the selected ML algorithms on the test set

D D. SP MWW** D. RP* D. FP* P* PL1* PL2* PN1* PN2*

Accuracy  
majority vote 0.661 0.531 0.972 0.909 0.990 0.981 0.992 0.995 0.956 0.988

Accuracy selected 
ML model 0.755 0.804 0.986 0.909 0.990 0.981 0.992 0.995 0.956 0.988

Precision selected 
ML model 0.964 0.807 0.986 0.807 0 0 0 0 0 0

Recall selected  
ML model 0.682 0.765 1 0.765 0 0 0 0 0 0

Number of examples 
of the test set 428 652 71 652 999 428 1,000 1,000 1,000 652

** Test set less than 1% of the validation set 
* No improvement towards the majority vote 
D: Death regardless of the phases, D. RP: Death in the rearing phase, D. FP: Death in the fattening phase, D. SP: Death in the suckling phase, 
MWW: Reaching the minimum weaning weight, P: Pericarditis, PL1: Pleurisy < 30 %, PL2: Pleurisy > 30 %, PN1: Pneumonia < 30 %, PN2: 
Pneumonia > 30 %

In Table 4, the precision and recall value of zero indicates that the ML model cannot distinguish 
the class and therefore classifies using the majority vote “does not occur”. Table 5 shows the hyper-
parameters of the ML models for death in the suckling phase, death regardless of the phases, and 
reaching the minimum weaning weight.



LANDTECHNIK 76(1) 31

Table 5: Configuration of the ML model resulting from the model selection

D D. SP MWW

Biological indicators BW, LNM, sex, TNP BW, H, LNM, NPA, RaM, 
RaF, sex, TNP BW, NPA, PWA, H, DI

Selected ML method SVM Logit SVM
Hyperparameters of the 
selected ML method

C: 0.1 
kernel: rbf C: 1 C: 5,000 

kernel: rbf
BW: Birth weight of the pig, MWW: Reaching the minimum weaning weight, D: Death regardless of the phases, DI: Daily increase in the mam-
malian phase, DSP: Death in the suckling phase, GNB: Gaussian naive bayes, H: Housing environment, LNM: Litter number of the mother, 
Logit: Logistic regression, NPA: Number of pigs born alive, NPS: Number of stillborn pigs, PWA: Planned weaning age of the pig in days, RaM: 
Race of the Mother, RaF: Race of the Father, SVM: Support vector machine, TNP: Total number of pigs born

For death in the suckling phase, the accuracy can be increased from 0.531 to 0.804. This increase 
is accompanied by a precision of 0.807 and a recall of 0.765. The increase of 0.273 in accuracy corre-
sponds to an increase in accuracy of 51.41% compared to using the majority vote. Using the ML model 
increases the accuracy of the death regardless of the phases from 0.661 while using the majority vote 
by 0.094 to 0.755. This difference of 0.094 corresponds to an increase in accuracy of 14.22%. Thereby, 
we achieve a precision of 0.964 and a recall of 0.682 for the risk of death regardless of the phases. 
However, we cannot achieve an improvement in accuracy concerning the majority vote on the test set 
for the diseases, the death in the rearing phase, and the death in the fattening phase. Additionally, 
we achieve an improvement in accuracy by using the ML model compared to the majority vote for the 
risk of reaching the minimum weaning weight. However, the test set is smaller than 1% of the training 
set for the risk of reaching the minimum weaning weight. We do not provide the configuration of ML 
models achieving the same accuracy as using the majority vote. Thereby, the use of these ML models 
is not necessary.

The SVM used the value 0.1 for the hyperparameter “C” and “rbf” as the kernel for the risk of 
death regardless of the phases. Additionally, the value 1.0 was used for the hyperparameter “C” of 
the method logit to predict the death in the suckling phase. The corresponding used biological indi-
cators for death regardless of the phases consists of the total number of pigs born, sex, birth weight, 
and litter number. Furthermore, the biological indicators used to predict death in the suckling phase 
consist of the number of pigs born alive, the number of stillborn pigs, the total number of pigs born, 
birth weight, sex, housing environment, the race of the mother, the race of the father, and the litter 
number. Finally, sex, the litter number, the total number of pigs born, and the race of the mother are 
included in the two combinations of biological indicators, which produce the highest accuracy gain 
across the animal welfare risks.

Discussion
We contribute ML models for the prediction of the death in the suckling phase and the prediction of 
the death regardless of the phases in the pig breeding. The relative increase in accuracy compared 
to the majority vote is 51.41% for death in the suckling phase and 14.22% for death regardless of the 
phases. However, the used biological indicators in the ML models do not describe any explanatory 
connection between the indicators and the animal welfare risks. Díaz et al. (2007) describe the in-
fluence of sex and race of the mother on animal welfare risks. As in Diaz et al., our ML model for 
the death in the suckling phase uses the mother’s sex and race as biological indicators. The used 
biological indicators litter number and the total number of pigs born may describe the influence of 
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previous litters, especially concerning the age of the sow (litter number) or the size of the current 
litter. In fact, it is conceivable that the total number of pigs born influences the birth weight of just 
one pig. Thereby, the influence of birth weight on death in the suckling phase is already known in the 
literature (Díaz et al. 2017).

However, our ML models could not achieve an increase in accuracy compared to the majority vote 
for the death in the rearing phase, death in the fattening phase, the diseases, and reaching of the 
minimum weaning weight. We think it is conceivable that these risks are caused by more complex 
influences, which were not appropriately included in our dataset, or that indicators of later phases are 
missing. Also, this follows our observation regarding a lower accuracy for death in the suckling phase 
than for death regardless of the phases. In addition, the death corresponds to a generalization of the 
death in the various phases. Furthermore, the hyperparameters differ between the model for death in 
the suckling phase and the model for death regardless of the phases.

Deaths after the suckling phase and illnesses may be influenced by more complex relationships 
than those included in the data of the biological indicators. Therefore, this constitutes in starting 
points for further research. For example, the use of other biological indicators is conceivable, like 
including sensor data (e. g., water flow rates, feed quantities, or housing temperature). Changing 
the hyperparameter values of the ML models for the same dataset could be another approach. Other 
approaches for future research may be to transfer the ML models to risks of other animals or to use 
data from other sources.

Our research has following limitations. The test set of death in the suckling phase equals 4.28% 
of the training set. Also, the test amount of death regardless of the phases equals 6.52% of the corre-
sponding training set. Thus, both test sets are below the targeted 10% or 1,000 examples. Thereby, a 
larger test set would increase the validity of the predictive power for new examples. The smaller test 
set than targeted were caused by dividing the entire dataset into a training set and a test set before 
one-hot encoding. On the one hand, this generated descriptive statistics for both the training and the 
test set. On the other hand, this leads to values in categorical features that are included in the test set 
and not included in the training set. Therefore, we removed examples with these values from the test 
set. For this reason, no examples would have been removed in the case of a division according to one-
hot encoding.

Another restriction results from the imbalanced class frequency of the target variables. As a re-
sult, the methods are optimized for a prediction of the majority vote since the majority vote leads to 
an almost errorless classification. In this way, the procedures achieve the highest accuracy, however, 
in the operational context, a high recall may be desirable to prevent animal welfare risks at an early 
stage. For this purpose, there exist other methods that can be examined in future research on animal 
welfare risks (Haixiang et al. 2017).

Instead of one dataset for all animal welfare risks, we used separate datasets for each animal 
welfare risk. However, this leads to different examples of pigs in separate datasets. This prevents a 
pig that died in the suckling phase from inclusion in either of the datasets of death in the rearing or 
fattening phase. Likewise, up to 11,000 most recent examples were used in the training and test set 
and not selected randomly, based on the assumption that the circumstances during the recording 
(e. g., the pen equipment) are closer to the actual current circumstances and therefore generating a 
positive effect for the forecasting performance. However, other circumstances like epidemics or feed 
changes are not considered, which may result in lower prediction performance.
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The min-max normalization used ensures efficient use of the ML in one-hot encoding but is also 
vulnerable to extreme values. Therefore, we controlled every continuous biological indicator for out-
liers. In the case of standardization using the z-transformation, the rarity of the non-zero features 
would not be retained, so we used the min-max normalization. The z-transformation describes the 
transformation of features in such a way that they have an expected value of zero and a variance of 
one. The one-hot encoding of the race of the mother and the race of the father combined with the other 
biological indicators and the number of different animal welfare risks made the efficient use of ML 
necessary. Efficient concerning the required time to train all these ML algorithms on the training set. 
We assumed the min-max normalization is faster than the z-transformation in our setting.

Conclusions
We propose a machine learning model that increases the accuracy for predicting deaths of pigs in the 
suckling phase from to 80.4% compared to a 53.1% majority vote. The proposed model achieves a pre-
cision of 80.7% and a recall of 76.5%. Additionally, we propose a machine learning model for predict-
ing deaths regardless of the life phase, increasing the accuracy compared to the majority vote from 
66.1 to 75.5%. This model achieves a precision of 96.4% and a recall of 68.2%. Moreover, for predicting 
death in the suckling phase we used biological indicators that are already available at birth time and 
can be determined without special sensors. Thus, in practice, potential deaths of pigs can be predicted 
with high accuracy and little effort close after birth. Thus, we contribute not only new models with 
high accuracy but also help pig farmers to retain a good reputation and to mitigate economic risks 
associated with animal welfare.
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