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Investigation of the efficiency of work 
processes within a farm using open data
Thoralf Stein

Research has long been concerned with the investigation and optimization of agricultural pro-
cesses. Still, there is potential to make processes more resource-efficient. An important step 
in exploiting this potential is to examine whether differences in efficiency within a company 
are due to natural reasons such as soil properties or other reasons such as vehicle control. 
In this work a possible procedure for such an investigation is presented. For this purpose, 
recorded machine data from the project “BiDaLAP” is combined with various open databases. 
With that, efficiency parameters can be quantified. A large part of the natural causes for effi-
ciency differences can be identified by the databases. It can also be shown which operational 
parameters still have optimization potential and how big the efficiency differences really are.

Keywords
Work efficiency, Big Data, Open Data, Support Vector Regression

The efficiency of an agricultural work process depends on various parameters. Many scientific papers 
on this topic deal with different approaches to examine productivity and efficiency. The results of 
such examinations depend heavily on the definition of the term “efficiency”, which is selected or ex-
amined in the corresponding work. It can be examined with regard to resource efficiency, the carbon 
footprint (Lal 2004), cost efficiency or yield per hectare (Kudaligama and Yanagida 2000). It can 
also concern the energy efficiency (Toll 2013) as well as the degree of sustainability of individual 
companies (Pacini et al. 2003). The problem, however, is that most of the considerations require clear 
local and time limits. These are usually at individual companies or regions, because properties such 
as height profile, soil properties or field geometry can be just as different as the weather conditions 
when carrying out individual work processes. It is therefore rare or only possible to transfer the test 
results to a limited extent.

The aim of this work is to minimize the above-mentioned influences using a correction procedure 
and to make the efficiency values more comparable. It should be possible, for example, to compare 
individual work processes in such a way that only the operator-dependent efficiency differences are 
visible and quantifiable. It shows how big the differences can already be within a company and how 
well a correction procedure is suitable for adjusting the efficiency.

The process was developed using process data from the project “Innovative use of big data in 
agricultural processes” (BiDaLAP). The BiDaLAP project aims to develop an electronic infrastructure 
consisting of a platform architecture and mobile data loggers. The development will be available in 
the future as an operational and strategic decision support system. 

Furthermore, various open databases were included in the correction procedure in order to be 
able to quantify as many influences as possible. For example, data from the Deutscher Wetterdienst 
(DWD), the Deutsches Zentrum für Luft und Raumfahrt (DLR) and Bundesanstalt für Geowissen-
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schaften und Rohstoffe (BGR) were included. All databases used are described in more detail below. 
Furthermore, the correction procedure is explained and the results are presented afterwards.

Material and method
During the BiDaLAP project, a test farm was equipped with mobile data loggers that record the GPS 
position at 1 Hz intervals. The crop years 2017 and 2018 of the farm in Saxony were thus recorded. 
As an example, this article analyses and compares all work that was carried out with a Väderstad 
precision seed drill. After clearing the GPS data, 48 operations with 2 different tractors on 40 differ-
ent fields are available for analysis. The area output  is chosen as a measure of the efficiency for this 
process. The quantity of the seed applied nor the fuel consumption of the machines can be extracted 
from the data. The quality of the work is also unknown. The distribution of the area output is shown 
in Figure 1.

Figure 1: Distribution of the area output of the work processes with the seed drill

It can be clearly seen that the work efficiency of the individual processes deviates significantly. 
It is important to analyse whether this is due to the environmental characteristics of the company or 
if the machine operator has an influence on it. The following openly accessible databases are used:

 � Deutscher Wetterdienst (DWD): The german weather service offers a variety of data that includes 
weather stations and also interpolated square grids with an edge length of 1 km, which are 
calculated based on the data from the stations. The soil moisture and the amount of rainfall are 
required for the model (Stein and Henschel 2019).

 � Deutsches Zentrum für Luft und Raumfahrt (DLR): The german aerospace center offers data from 
the TanDEM-X mission. With the radar satellites of the TanDEM-X mission, a highly precise, dig-
ital 3D image of the earth is recorded. Precise elevation data are collected in a 12 m grid for the 
entire earth and converted into a uniform map material. For the model, the climbing resistance 
can be determined using the height data.

 � Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): The BGR is the Federal Institute for 
Geosciences and Natural Resources and offers comprehensive soil mapping of various accuracies 
or establishes a connection to the state offices. The type of soil with the associated sand, clay and 
silt ratio is required for the model (Düwel et al. 2007). 
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The only non-open data that are obtained directly from the farmer are the GPS tracks as well as 
field data and borders. The field data could also be taken from the geoportal of the respective federal 
state. The combination of these open databases and the in-house GPS tracks make up the approach of 
this work. Next, as many environmental parameters as possible are extracted from the databases that 
can have an impact on the area performance. Some values were not taken directly from the databas-
es, but were subsequently calculated in order to optimally reflect the properties of the environment 
(Table 1). 

Table 1: Environmental parameters with the corresponding correlation coefficients for area output, green positive 
correlation, red negative correlation

Parameter Unit Correlation  
coefficient Parameter Unit Correlation  

coefficient
intensity of the height profile m -0.07 sand ratio % 0.20
soil temperature °C 0.01 year -0.04
soil moisture % 0.01 month 0.04
daily rainfall mm 0.25 track length m 0.52

clay ratio % -0.19 complexity of the 
field geometry -0.14

slit ratio % -0.19 machined area ha 0.46

The operationalisation of certain parameters was carried out as described below: 
 � Intensity of the height profile: 

The intensity of the height profile was calculated using DLR’s altitude data. It can be well rep-
resented by the standard deviation slope. A higher standard deviation implies a higher change 
in altitude during the operation. Therefore, the slope along the GPS track is determined and its 
standard deviation is calculated.

 � Track length: 
The track length refers to the distance travelled during work in the field between two turns. For 
automatic determination, the GPS data was divided by an algorithm into working points and 
turning points and the distance between two turns was calculated. The mean track length was 
chosen as a comparative value.  

 � Complexity of the field geometry: The differences in the field geometry are shown in Figure 2. 
The more angled a field is, the longer the machining time. In order to be able to drive over all 
parts of the field completely, additional driving manoeuvres must be carried out. This requires 
additional working time and thus the area output is reduced. For quantification, the number of 
angle changes of the field geometry is chosen, which is greater for complex geometries than for 
simple
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First, the individual variables were compared with their linear correlation coefficient to the area 
output. This represents the dependence of two variables on each other and has a value range from -1 
to 1. 0 means no dependence of the variables, -1/1 strong linear dependence. Furthermore, the p-val-
ues of each variable must be calculated in order to be able to make a statement about its significance 
for the area output (Ross and Heinisch 2006). 

It can be seen from the correlation coefficients in Table 1 that the influence on the area output of 
the parameters differs. The coefficients vary from practically no correlation between soil temperature 
and area output to a clearly recognisable correlation between track length and area output.

In addition to these natural influences on the area output, there are also the influences that can be 
traced back to the control of the machine. These are again shown with the corresponding correlation 
coefficient in Table 2. It can be seen that the coefficients are significantly higher than for the natural 
parameters. This results from the fact, that these variables have a direct effect on the working time 
and thus on the area output. The listed parameters were calculated entirely from the GPS lanes and 
the corresponding time stamp. The p-values are calculated by means of a t-test for all parameters. 
This resulted in a p-value of less than 0.01 for almost all listed parameters, which indicates a high 
significance (Bortz and Döring 2006). Only the p-values for the duration of the stops per hour and 
the complexity of the field geometry are higher than 0.05. This suggests a less obvious statistical 
correlation between these variables and the area output. 

Table 2: Influencing parameters that depend on the operator and their correlation coefficient to area output

Parameter Unit Correlation  
coefficient Parameter Unit Correlation  

coefficient
stop count per hour -0.685 actual work width m 0.638
mean length of stops s -0.029 work speed m/s 0.828
turning time s -0.667

When considering the area output of the individual processes, the question arises how the two 
parameter groups can be used to describe the area output. Furthermore, it must be possible to distin-
guish between them again afterwards. A possibility is a regression model. A regression model reflects 
the functional relationship between several independent variables  and a dependent variable  (Dodge 
and Jurečková 2000). In this study, a linear relationship was first investigated (equation 1):

Figure 2: Display of two different field geometries with GPS track data, left simple geometry (value=4), right complex 
geometry (value=11)
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  (Eq. 1)

The parameters 𝑎0 to 𝑎n re the so-called regression parameters, which describe the influence of a 
variable in the model. The area output is selected as the dependent variable and the environmental 
and operator parameters listed up to this point are selected as independent variables. The independ-
ent variables can be used to form a target function that estimates the area output. After the first 
analysis, it was shown that the mean square error became too large for both a linear and a nonlinear 
approach. The mean square error is a central quality criterion in statistics. It represents the disper-
sion of the model around the expected value. In this case, the error was 1.782 ha²/h² for the linear ap-
proach and 1.340 ha²/h² for the non-linear approach. These approaches were therefore not applicable. 

A Support Vector Regression (SVR) was implemented as an alternative regression approach. This 
enables the solution of the regression problem in higher-dimensional space with the help of so-called 
kernel functions. Dolan 2019, Steinwart and Christmann 2008 as well as Cherkassky and Dhar 
2010 explain the exact mode of operation of the Support Vector Regression, which is why it will not be 
discussed in detail here. As a measure of the accuracy of the regression, the mean square error is also 
chosen here, which reflects the deviation between the recorded area output and the regression model. 
The coefficient of determination   can be used as a further quality feature. This coefficient reflects 
how well the individual independent variables are suited to explain the variance of the dependent 
variable (Bortz and Döring 2006). A disadvantage of the SVR is that the model parameters cannot be 
represented as simply as in formula 1. These are hidden in the support vectors and a representation 
at this point would not be helpful.

In order to be able to quantify the influence of the parameters, the SVR Support Vector Machine 
must be trained using the existing work processes. Then all working processes are averaged to the 
same environmental parameters and a “corrected” area output is determined with the regression 
model. It can be shown how immense the dependence of the area output on the operator parameters 
is and which ones have the utmost influence. 

Finally, it is shown how large the potential savings of time and costs can be if the corresponding 
parameter is optimized. This is done using a sample calculation with a 10 ha field, which corresponds 
to the average field size of the farm under consideration. The field work calculator (KTBL 2018) from 
the Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL) as well as the experience 
records for inter-farm machine work (Uppenkamp 2018) are used for cost calculation. 

Results
First of all, it will be compared how well the regression model represents the actual area output with 
the available parameters. Figure 3 shows the results for each record with the corresponding model 
value. It can be seen that there is a usable precision of the model. This is also confirmed by the mean 
square error of 0.219 ha²/h². The average percentage deviation is 0.4% and the standard deviation 
5%. Furthermore, the coefficient of determination  is 81%, which is an acceptable value for such a 
application. After training, the model consists of 43 support vectors, in which the weighting of 20 
parameters each is stored. The higher accuracy of the model is due to the better handling of nonlinear 
and nonmonotonic data. Also, SVM’s have the ability, to generalize regression problems very well 
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(Steinwart and Christmann 2008). It can be concluded that the regression model using a Support 
Vector Machine is suitable for modelling the process with a precision seeder.

Figure 3: Comparison between recorded area output and regression model
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The next step is to adjust the environmental parameters. For this purpose, the averaged parame-
ters of all processes are assigned to each recorded process. The area output is then calculated using 
the regression model and the adjusted environmental parameters and the original operator param-
eters. The recorded and the corrected area output are shown in Figure 4 as box diagrams. These 
graphs clearly show the distribution. The box is bounded by the upper and lower quartile, the total 
extent represents minimum and maximum of the considered size. It can be seen that the spread of 
the corrected area output has become considerably smaller in contrast to the recorded one. The orig-
inal area output ranges between 3.5 and 8.1, the corrected area output only between 4.5 and 7.0. It 
reflects the deviation of the area output, which is caused solely by the operator. This also means that 
the environmental parameters have a considerable influence on the area output and must always be 
taken into account when examining the efficiency of work processes. For the sake of completeness, 
the model result is also shown without adjusted environmental parameters. It can be seen that the 
optimum has not yet been achieved here, since the model apparently does not fully reflect the wide 
spread of the observations.

Figure 4: Box diagram of the area performance of the recorded data, as well as the calculated area output of the 
SVM without and with averaged environmental parameters



LANDTECHNIK 75(2) 57

In order to determine the influence of the individual operator parameters, the next step is to pa-
rameterize the model with the original environmental data and to change only one operator parame-
ter at a time to the best possible value. In order not to overestimate the optimization potential, the 90% 
quantile is assumed here. It is shown how large the increase in area output could be. The given values 
are the average increases for all observations. The initial values are the actually observed parameters 
and the increase refers to the adjustment of the respective optimization parameter. The individual 
parameters show different effects on the area output. These can already be seen from the correlation 
coefficients in Table 2, it is clarified again in Table 3. The lowest optimisation potential according to 
Table 2 is in the stops per hour, followed by the average turning time and the actual working width. 
Obviously, the work speed offers the most potential. The calculated cost savings in Table 3 result from 
the reduced working time and the associated labour cost savings and the average tractor costs per 
hour without fuel. 

Table 3: Change in efficiency and savings for a precision seeder if one of the specified parameters equals the 90% 
quartile; calculations for a 10 ha field

Stops per hour Turning time Actual work width Work speed

Increased area output 0.21 0.15 0.11 0.32 

Time savings 9.7 min 7.1 min 5.2 min 14.5 min

Cost savings 5.50 € 3.98 € 2.94 € 7.41 €

The wage costs are assumed to be 17 €/h for a tractor driver according to the usual rates of expe-
rience. Depending on the size, the tractor costs range between 15 and 23 € per hour. If the savings 
are added up, there is a potential of half an hour, as well as wage and tractor costs of just about 20 €, 
which corresponds to about 2% of the total costs of the process. This is an acceptable figure for savings 
that can only be achieved by optimised driving behaviour. 

Table 3 shows average effects of the parameters shown on the area output. These effects describe 
the changes of a dependent variable (the area output) by an independent variable. All other independ-
ent variables are kept constant.  A comparison of these effects for all independent parameters listed 
in tables 1 and 2 with the corresponding correlation coefficients is a further indication of the validity 
of the model (Table 4). The effects were determined using the 90% quantile of the corresponding val-
ue. It can be seen that the trends of correlation coefficients and the change in area output are very 
similar, only the intensity does not match in part. This fact is especially true for the duration of stops 
and the complexity of the field geometry. This could be due to the relatively high p-values of these 
independent parameters. 
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Table 4: Comparison of the correlation coefficients and average effects of the individual independent parameters; 
marginal effects were calculated using the 90% quantile

Parameter Correlation  
coefficient

Changes 
in Parameter Correlation  

coefficient
Changes 

in

stop count per hour -0.685 -0.204 clay ratio -0.190 -0.008

mean length of stops -0.029 -0.064 slit ratio -0.190 0.013

turning time -0.667 -0.081 sand ratio 0.200 0.115

actual work width 0.638 0.127 year -0.040 -0.093

work speed 0.828 0.323 month 0.040 0.149

intensity of the height 
profile -0.070 -0.042 track length 0.520 0.232

soil temperature 0.010 0.054 complexity of the field 
geometry -0.140 0.084

soil moisture 0.010 0.107 machined area 0.460 0.252

daily rainfall 0.250 0.193      

When investigating efficiency changes, it should be noted that variables such as work speed can 
also have an enormous influence on the quality of work (Hannusch et al. 1984). Quality of work can 
also be a measure of the efficiency of a process, which is definition-dependent. It also depends on 
the nature of the process and the work objective. When sowing it is the even distribution and opti-
mum quantity of seed possible measures of work quality. When ploughing, besides the area output, 
the total labour costs and the desired soil appearance are important measures of work quality. As 
explained in the section on materials and methods, this has not been dealt with in the context of the 
work, as there is no data on resources such as fuel and material spread or collected. If these data are 
also available in future studies, the definition of efficiency will need to be expanded. The target figure 
could then be, for example, the process costs per hectare. An optimisation function could be used to 
determine the ideal trade-off between work quality and time and costs.

Conclusions
The procedure has shown that a correction of efficiency values is possible with the help of public 
databases and Support Vector Regression. Individual parameters can also be examined for their opti-
mization and savings potential. However, other parameters, such as fuel consumption and the quality 
of field work, which are also important efficiency variables, should be considered in subsequent 
investigations.

In future, it will be necessary to demonstrate how well the procedure is suited to comparing work 
processes of the same type on different farms. Furthermore, it must be investigated which processes 
are suitable for the analysis and where the weaknesses of the approach are located. More extensive 
data sets with additional heterogeneities could lead to an increased number of support vectors and 
could improve the model and reduce the error sizes.  Previous work has provided corresponding ex-
perience in this respect (Stein and Meyer 2018). A use of the method as a sub-function for a decision 
support system is also being considered in the course of the project BiDaLAP.
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